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1. INTRODUCTION

There are many mechanical devices that involve a disc with an auxiliary system; examples
include car disc brakes, computer discs and circular saws. Pioneering research into the
dynamic instability of such systems started with the study of a stationary disc excited by
a rotating load [1}3] and a disc spinning past a stationary load [4]. In all cases the system
could become unstable at some speci"c values of system parameters (typically mass, sti!ness
and damping) and running conditions even when friction between the two contacting
components in relative rotation was absent. Hutton et al. [5] studied the frequency speed
characteristics of guided rotating discs a!ected by the spring sti!ness, the number of springs
and spring location using a Galerkin method. Yu and Mote [6] investigated the parametric
vibration of circular plates containing small imperfections through a perturbation method.
Jiang et al. [7] analyzed the dynamic response of a #oppy disc system under axial excitation.
Shen and Mote [8, 9] gave a mechanism for the instability of a circular plate caused by the
damper in the rotating mass}spring}damper system in the supercritical speed range and
looked at the stability of asymmetric circular plates. Shen [10] studied the parametric
resonances of a stationary disc excited by a rotating slider using the method of multiple
scales. Huang and Mote [11] considered a large damping force acting on a spinning disc.

The modelling of friction as a follower force has a considerable history in the literature on
disc vibrations. Ono et al. [12] included follower-force friction in their study of instabilities
in computer disc-drives and found that waves travelling in the same direction as the disc
were rendered unstable. Tian and Hutton [13] used a follower force (or a regenerative force
in their terminology) in the modelling of wood-saw dynamics. Lee and Waas [14] examined
the instability of a rotating annular laminated brake disc under a non-rotating frictional
follower force. Hulten [15] considered di!erent treatments of friction (including the
follower force model) for drum-brake analysis. Chan et al. [16] found that the rotating
frictional follower force made the backward travelling waves unstable in the special case of
the resonances remote from combination resonances of a stationary disc. Tseng and
Wickert [17] considered friction to be distributed over a sector and treated it as a follower
force. Mottersheard et al. [18] treated the brake pad as an elastic foundation (with mass,
damping and follower-force friction). Ouyang et al. [19] investigated the dynamic
instability of a stationary circular plate excited by a rotating friction force with negative
slope, and in a further paper [20] developed a general method for analyzing the dynamic
behaviour of a car disc brake system.
022-460X/01/490768#12 $35.00/0 ( 2001 Academic Press



Figure 1. Simple representation of the #oating calliper disc brake system.
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The #oating-calliper disc brake system can be represented very simply by the
arrangement shown in Figure 1. The dynamic load mxK#cxR #kx is superimposed on the
initial stress problem of the normal load N/2 due to the applied brake pressure.
Straightforward analysis shows that the disc is subjected to a transverse dynamic load,
together with a constant frictional load of lN on the disc contact surfaces opposite to the
direction of rotation of the disc. Transverse vibration modes of the disc (and vibration
modes of the other brake components) occur in the range of the squeal frequencies (typically
2}4 kHz), in which case the brake pads follow the de#ections of the disc and the friction
forces have small components in the transverse direction.

The study and prevention of unstable vibration is very important to the vehicle brakes
industry and there is an urgent need for a model that will predict unstable squeal-noise
dynamics with reasonable accuracy. The follower-force model is a candidate and its
suitability will depend upon the quality of its predictions when compared to experimental
observations. The follower-force model can be justi"ed for practical application if it is
capable of reproducing observed behaviour in physical systems. Dynamic measurements
from systems containing dry friction are notoriously di$cult to obtain, not only because the
data from displacement (or acceleration) transducers tend to be very noisy but also because
the system can change signi"cantly with wear on the surfaces. One aspect of this latter point
is that squeal frequency experiments are not very repeatable. However, the existence of
backward and forward travelling waves is thought to be relatively straightforward to
con"rm [21], and is the motivation for the present theoretical study. The previous paper of
Chan et al. [16] is extended to include the direction of the travelling waves at
combination-type instabilities for the "rst time.

2. VIBRATION OF A STATIONARY DISC UNDER A ROTATING FRICTION LOAD

The equation of transverse motion of a stationary disc excited by a rotating
mass}spring}damper system with dry friction, in a cylindrical co-ordinate system shown in



Figure 2. The co-ordinate system of the disc.
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Figure 2, may be written as
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for which a list of notation is given in Appendix A.
The transverse motion of the disc can be expressed in modal co-ordinates such that,

w (r, h, t)"
=
+
k/0

=
+

l/~=

t
kl

(r, h) q
kl

(t), (2)

where,

t
kl

(r, h)"
1

Johb2
R

kl
(r) exp(ilh), (3)

The modal functions satisfy the ortho-normality conditions,

P
b

a

oht1
kl
t

rs
rdrdh"d

kr
d
ls
,

P
b

a

D t1
kl
+4t

rs
rdrdh"u2

rs
d
kr

d
ls
, (4)

where the overbar denotes complex conjugation.
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Substituting equations (2) and (3) into equation (1), multiplying by t1
rs
, integrating over

the disc area and then using equation (4) leads to [16],
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Equation (5) is an in"nite system of Hill's equations. Therefore, only an approximate
solution may be found. The dynamic behaviour of equation (5) is determined by the system
parameters and operating conditions and may become unstable. The disc can be unstable at
some particular values of the system parameters and operating conditions. In the subcritical
speed range, instability is caused by the friction [16]. In the supercritical speed range,
instability is more pronounced because damping may become destabilizing even when
friction is absent [10]. The instability thus caused is also referred to as a parametric
resonance since it is caused by cyclical variation of the system parameters and not by an
external applied load.

3. MULTIPLE SCALES ANALYSIS

When any one of the parameters of the rotating mass}spring}damper systems is very
small, a perturbation method may be used, which can reduce the amount of computation
that would be necessary by using other methods such as the state space method. The
method of multiple scales [22] is particularly suitable for solving the above problem, and
similar problems [10, 16]. The following new variables are introduced,
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and the parameter e is used to signify a small quantity. It is assumed that the mass, damping,
sti!ness and friction are all small,
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Substitution of equations (6)}(8) into equation (5) yields
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Independent time scales are de"ned as multiples of the integer powers of e,
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and a solution q
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is sought in the form,
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The usual procedure is to separate equation (9) into a number of equations de"ned by
selecting the coe$cients of the di!erent powers of e. The solution of the zeroth order
equation is
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where A
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and B
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are determined from the equation of "rst order terms. This latter equation
can be arranged in the form,
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It should be noticed that C~
rs
'0 in the subcritical speed range but C~

rs
(0 may be true in

the supercritical range.
Of course the assumption of smallness in the parameters of equation (8) is a serious one

which has consequences for the accurate location of the regions of unstable disc dynamics
which is the main purpose of the analysis. However, Chan et al., [16] using typical
parameters of a disc brake found the instability regions determined from multiple scales
analysis to be similar to those obtained by the state-space method, which does not assume
small parameters but requires signi"cantly more computation.

Previous work [10, 16] indicates that combination resonances occur close to,
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and that single-mode resonances will be close to
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The transverse vibration of the disc can be expressed in the form of a series of standing
waves and forward and backward travelling waves as,
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where cc denotes the complex conjugate.
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From equation (17), it is clear that if and only if A
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backward (or forward) travelling wave of the (k, l) mode is made unstable. Therefore, the
subsequent analysis on the stability of travelling waves is conducted by examining A
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interest. Note that the standing wave modes represented by R
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[16] and, therefore, are not considered in the subsequent analysis.

4. TRAVELLING WAVES IN COMBINATION RESONANCES

There are four types of combination resonances, as shown in equation (15) by the
di!erent combinations of plus and minus signs. For simplicity, the mathematical treatment
is presented only for the following type,
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where p is a detuning parameter.
To ensure that the terms in expansion (11) really do have increasing orders of smallness, it

is necessary to set certain secular terms in equation (13) to zero. This leads to the following
expressions, for the (k, l) mode,
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and for the (r, s) mode,
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The second equation in equations (19) and the "rst equation in equations (20) are
ordinary di!erential equations and can be solved straightforwardly. The "rst equation of
equations (19) and the second equation of equations (20) form a pair of simultaneous
ordinary di!erential equations. Since q
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where the characteristic exponent j is determined by solving the following quadratic
equation of complex coe$cients,
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The real part of the exponents in equation (21) determines if a wave is stable or not. If
a particular parameter is seen to make a positive contribution to the real part of an
exponent, then this parameter is destablizing towards the wave represented by that
exponent. If its contribution is negative, then it is stabilizing. In this light, the solution in
equation (21) indicates that damping of the disc is always stabilizing. The damping of the
rotating system is seen to be stabilizing in the subcritical range but is destabilizing some (k, l)
modes and the associated forward travelling waves (when C~

kl
(0 for some l in the

supercritical speed range so that 1 makes a positive contribution to the exponent of B
kl
).

Shen and Mote [8] explained the reason why damping of the rotating system could be
destablizing in the supercritical speed range.

The friction is obviously destabilizing the backward (r, s) waves (see A
rs

in equation (21)).
It is also known (by solving equation (22) for j) that the friction makes A

kl
and B
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divergent

at certain conditions [16] when the imaginary part of a j is negative. In summary, the
friction can destabilize both the forward and backward travelling waves of the (r, s) mode
but only the backward travelling wave of the (k, l) mode for the combination resonances of
(s#1)X"b

rs
!b

kl
(s'l, l*0). The regions of instability for these types of resonances are

determined by certain values of system parameters and the operating parameter.
Examination of equation (21) reveals the overall direction of the unstable travelling waves

in terms of the rotating speed of the load. Since the real parts of ij in the exponent of A
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and
!ij1 in the exponent of B
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are equal, no conclusion can be made about the overall direction

of travelling wave from these two coe$cients. However, since the friction makes a positive
contribution to the exponent of A
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but a negative one to that of B
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, it can be concluded that

the overall trend, when unstable dynamic behaviour occurs, is for the travelling waves to be
dominated by backward motion. As equation (18) indicates that for this kind of
combination resonances the values of X are small, one may conclude that at low speed
range, both backward and forward travelling waves may be destabilized by friction but the
dominant wave motion will be backward.

For the resonances of (s!l) X"b
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where the characteristic exponent j is determined by the following equation
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It can be seen that damping of the disc is always stabilizing, that damping of the rotating
system is stabilizing in the subcritical speed range and can destabilize only the forward
travelling waves at certain conditions in the supercritical speed range, and that the friction



LETTERS TO THE EDITOR 775
makes A
kl

and A
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divergent. Thus, it is clear that the friction can destabilize both the
forward and backward travelling waves of the (k, l) and (r, s) modes for the resonances type
of (s!l )X"b

rs
!b

kl
(s'l, l*0).

But by examining equation (23) in a similar way to examining equation (21), one cannot
ascertain the dominant direction of the travelling waves without performing speci"c
calculations. Both travelling waves can be made unstable at this relatively high-speed range,
which is well outside the range of interest for disc brake design.

Similarly, the in#uence of damping, sti!ness and the friction on the instability of the
travelling waves for the other two types of combination resonances can be found but are not
presented here. The instability of these two types of combination resonances occur in the
supercritical speed range.

Single mode resonances of the form 2lX#2b
kl
"ep (l'0) occur at or above the "rst

critical speed of the disc. Multiple scales analysis (not included in this paper) can be used to
show that for all the single-mode resonances backward waves are destabilized, and forward
waves stabilized, by friction. The forward waves are destabilized by the sti!ness of the
rotating system, for all the single-mode resonances. For certain speed-independent
resonances the backward waves are destabilized by friction whilst the forward waves are
stabilized. Chan et al. [16] studied the speed independent resonances but did not include
damping in the disc or in the rotating system.

5. A SIMULATED EXAMPLE

The above analysis on di!erent types of resonances shows that the travelling waves which
are destabilized by the friction depend on the types of resonances concerned and on the
speci"c values of system and operating parameters. To o!er a whole picture about the
instability of the travelling waves, an example is presented here.

The dimensions and properties of the disc are, a"0)067 m, b"0)12 m, h"0)01m,
E"120 GPa, l"0)25, o"7000 kgm~3, em"0, and for the rotating system, r

0
"0)1 m,

ec"0)24, e1"5]10~5, ei"0)7. ef can vary between 0 and 5]10~5. The disc is clamped
at the inner radius and free at the outer radius. The "rst "ve frequencies of the disc are
u

kl
"14270, 14630, 16070, 19370 and 25100 (rad/s) for k"0, l"0, 1, 2, 3, 4 respectively.
The regions of instability induced by the friction for the summation- and di!erence-type

combination resonances ((s#l)X"b
rs
!b

kl
and (s!l)X"b

rs
!b

kl
(s'l, l*0)) are

illustrated in Figure 3. They all occur at subcritical speeds. The instability of the forward
and backward travelling waves is summarized in Table 1. The regions of instability which
are located in the supercritical range are not presented since they are unimportant to a large
class of engineering systems including disc brakes.
TABLE 1

Instability of travelling waves for combination resonances in the subcritical speed range

Combination resonance types Modes Forward wave Backward wave

(s#l)X"(b
rs
!b

kl
) (r, s) Unstable Stable*

(k, l) Stable Unstable f

(s!l)X"(b
rs
!b

kl
) (r, s) Unstable Stable*

(k, l) Unstable Stable*



Figure 3. Regions of instability of friction-induced combination resonances.

776 LETTERS TO THE EDITOR
Note that the backward travelling waves marked by * in Table 1 are stable only in the
range of friction of 0)ef)5]10~5 shown in Figure 3 and these backward travelling
waves can still be made unstable by greater friction of ef'e1 (b

rs
#sX)/s (s'0) since this

greater friction values make positive the real part of the exponent of A
rs

in equations (21)
and (23). Similarly, greater values of friction of ef'e1 (b

kl
#lX)/l (l'0) make A

kl
in

equation (23) divergent. The unstable (k, l) backward wave marked by f has a larger
positive real part in its exponent than that of (r, s) forward wave.

The above results are interesting in particular to the disc brake squeal problem where
a number of squeal mechanisms [23], including the follower-force mechanism, have been
put forward. Finally it should be noted that those models of disc vibration which do not
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take into account the relative rotation between the disc and the auxiliary system, like the
one proposed in reference [24], are incapable of predicting combination resonances.

6. CONCLUSIONS

This paper has investigated the instability of the forward and backward travelling waves
in the transverse vibration of a stationary disc induced by the friction in a rotating
mass}spring}damper system. Combination resonances have been considered across the
whole speed range and the friction force has been modelled as a follower force. A simulated
example has been presented to show the regions of instability for combination resonances
and the instability of the associated travelling waves at the subcritical speeds. In addition to
the already-known facts that the friction alone destabilizes the backward travelling waves in
the speed-independent resonances and that damping of the rotating system is destabilizing
in the supercritical speed range, it was found in this investigation that the friction modelled
as a follower force is the most destabilizing factor among the system parameters. The
"ndings made in this paper may be useful in validating the mechanisms for unstable
vibrations in discs. Friction can destabilize the backward travelling waves of both modes in
all the summation-type resonances in the subcritical range. One of the modes (k, l) is
unstable in the range of friction shown in Figure 3 whereas the other (r, s) only becomes
unstable at higher levels of friction. In the di!erence-type of combinations, which generally
occur at higher subcritical speeds, the regions of instability are narrower (as shown in
Figure 3) so they are less important than the summation-type combinations. Friction is
destabilizing to both the forward waves and the backward ones in both modes of the
combination.
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APPENDIX A: NOMENCLATURE

a, b inner and outer radii of the disc
c, k, m damping, sti!ness, mass of the rotating system respectively
h thickness of the disc
i J!1
q
kl

(q
rs
) modal co-ordinate for k (r) nodal circles and l (s) nodal diameters for the disc

r radial co-ordinate in cylindrical co-ordinate system
r
0

initial radial position of the rotating system
t time
w de#ection of the disc in cylindrical co-ordinate system
D #exural rigidity
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D* Kelvin-type damping coe$cient
E Young's modulus
F the friction force between the disc and the rotating system in the circumferential

direction, F"kN
G

kl
, H

kl
constants of integration in the solution of q

klN twice the normal load due to brake pressure
R

kl
combination of Bessel functions to represent the mode shape of the disc in the radial
direction

d ( ) ) Dirac delta function
d
kl

Kronecker delta
h circumferential co-ordinate in cylindrical co-ordinate system
j characteristic exponent in exp(ijq) which describes the dynamic response of the disc in

the time domain
l the Poisson ratio of the disc material
m
K

damping coe$cient ("D*/2D) of the disc
k friction coe$cient
o mass-density of the disc
t
kl

mode shape function for the transverse vibration of the disc corresponding to q
klp detuning parameter

u
kl

natural (circular) frequency corresponding to q
klXI constant rotating speed of the disc in radians per second
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